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ABSTRACT:

A recoil analysis to assess several recoil mitigating
technologies applied to shoulder-fired weapons such as a grenade
launcher or shotgun has been conducted. Parameters such as weapon
weight, recoil impulse, recoil velocity and recoil energy were
identified as critical. A range of values were selected for
evaluation. In order to monitor and assess the dynamics occurring
during its cyclic motion, a mathematical model for a 12 Gauge weapon
has been developed. The model defines each major component and the
relative connectivity between them is defined in terms of kinematic
joints. A Lagrangian methodology is utilized to formulate the rigid
body dynamic equations of motion. Three commercial recoil reducing
devices were evaluated in the model to determine their specific effect
on recoil motion, both on the weapon and on the soldier firing the
weapon. A full test program was conducted at the Armaments Research
Laboratory (ARL) on a modified 12 Gauge shotgun to measure recoil
control for each of the recoil devices. An additional model was
formulated for this fixture. Comparisons between model and
experimental test results were made. Further tests and evaluation
include combinations of recoil devices. Documentation of sample model
output is included.
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PHILIP D. BENZKOFER

U.S. Army Armament Research, Development and Engineering Center
Close Combat Armaments Center
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INTRODUCTION

The primary objective of the Parametric Recoil Analysis program
was to create computer models that are capable of quantifying the
effectiveness of recoil mitigating devices in shoulder fired grenade
!aunchers/weapons with known weapon weights and cartridge
characteristics. Early models were concentrated on th,.. M203 system as
a baseline. Followon analyses were concentrated on modeling a 12 Gauge
weapon installed in a firing fixture designed and fabricated by the
Armaments Research Laboratory's Weapons Branch at Aberdeen ProvingGrounds. This decision was based upon the fact that physical data
obtained from firing from the test fixture would provide the basis for
model comparison. The ARL fixture was designed to simulate the motion
of a shooter's shoulder, represented by a sliding mass, when firing a
weapon. The capability to incorporate shock absorbeis and recoil pads
was designed into the fixture. By comparing the model results to the
actual test fixture results, a good correlation could be obtained. By
obtaining this correlation, the necessity to test future shock absorber
designs is substantially reduced or eliminated.

The ultimate goal was to produce a model for use in determining
the characteristics of an "ideal damper" based upon known ammunition
parameters and weapon configuration. In this way, damping parameters
can be input to the model until the best recoil mitigating results are
obtained. The damper can then be designed around those damping
characteristics. This provides the background for the subject paper.
A detailed description of the system and the analysis performed along
with the results follows below.

WEAPON SYSTEM MODELING

In order to address the analysis of the weapon, a brief
description of the weapon is relevant. Initial analyses were based
upon the 40mm M203 grenade launcher system. However, based upon a test
program conducted at ARL using a 12 Ga Remington, this system was
selected for a modeling effort. A test fixture for thf test firing
program was designed and built (see figures 1 and 2) at the ARL
facility, where the test firings were conducted. A later fixture was
developed which substantially reduced the weight of the sliding mass,
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which represents the shoulder mass. This reduction in mass was based
upon initial testing results, indicating the first translating mass
shown in figures 1 and 2 did not replicate actual motion. The fixture
did, however, allow for the development of a generic computer model.
The 12 Ga weapon was modified by cutting the stock and constructing a
translating fixture which would allow for insertion of the recoil
devices and pads. Three specific rounds of ammunition - a target load,
a rifled slug load and a heavy magnum load, were utilized in testing,
consequently their pressure-time curves were used in the model as
system drivers. A typical curve is shown for the magnum round in
figure 3. A schematic drawing representing the ARL fixture/weapon
system is shown in figure 4. This schematic actually represents the
later test fixture described above which was developed to change the
mass of the translating mass. Mass one with coordinates x1, Yl
represents the Inertial Reference Frame from which all global
measurements are made. Mass two with coordinates x , y represents the
mass center of the shoulder, mass three with coordigatei x3 ", Y3
represents the mass center of the rifle and finally mass four with
coordinates x , y4 represents the mass center of the projectile. The
associated co~rdinates are shown on the figure. Connectivity is
indicated by spring and damper pairs k , c and k 2,c between masses
one and two and k3,c. and k 4 ,c 4 betweef malses two aid three. The
spring and damper pairs between masses one and two represent two
springs with k = k =149 lbs/inch and c = c2 = 0. The operating height
of these two s rin s is 4.4 inches, whi h is also the free length. The
spring and damper pair represented by k3 , c3 is a recoil dissipating
device such as a shock absorber where k3 is a constant value and c3 is
variable with velocity. The spring and damper pair represented by k4,
cA is a secondary dissipative device such as a pad where measured
vilues are utilized for k and c4. The variable pressure time curve
for the ammunition is applied to the projectile in the forward
direction and conversely applied to the rifle in the rearward
direction. The dynamic equations of motion are code generated [1] and
are in the Lagrangian form given by

d ? ?T, . (1)
dt 04--J-r- "t + "

where

T is the kinetic energy
qi are the generalized coordinates

are the generalized external forces acting on the system
A is the set of Lagrange Multipliers associated with the

constraints imposed on the system
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The equations of constraint are of the form

t(q,t) = 0 (2)

These equations represent the mathematical description of constraining
motion. The model, then, can be exercised to obtain the dynamic motion
for given parameter changes such as spring damper rates. This analysis
provides the basis for any future design and/or redesign efforts. The
author has has significant experience in application of dynamics code
to weapon and armament system analysis in [3] through [1i].

ANALYSIS

Mass two, the shoulder, on the ARL fixture, (see figure 4) weighed
32 pounds. This weight was utilized based upon a previous man-weapon
analysis [2]. There were no springs between vasses one and two, so
effectively k = c k.)=c. = 0. as shown in figure 4. Two of the
most promisinj shoLk abiorbeis based upon initial testing and analysis
were selected for inclusion in this paper Curves depicting velocity
versus damping coefficients for these two shocks are shown in figures 5
and 6, and provide the force effects of the shock absorbers. These
data were furnished by the manufacturers.

The first series of output given in figures 7, 8 and 9 depict
displacement, velocity and acceleration versus time, respectively, for
the translating mass, or shoulder (for the early BRL test fixture model
shown in figures 1 and 2). In each of the figures the motion for the
cases of no shock, an Ace and a Taylor shock absorber is shown. The
ammunition round is the magnum round with its P-T curve shown in figure
4. The significant difference in absorber effect is best shown in
figure 9 for accelerations, where the magnitude is substantially
greater for the case with no shock absorber. Similarly the
displacement, velocity and acceleration versus time for the rifle is
shown in figures 10, 11 and 12, respectively. The velocities in figure
11 are significantly higher for cases with the shock absorbers as
compared with the translating mass in the previous figures, as is also
the case in figure 12 for accelerations of the rifle. For the case of
the ARL test fixture with the lighter translating mass, specifically
11-12 pounds, it is shown schematically in figure 4. The early ARL
test fixture weighed 32 pounds and did not have the two large springs
represented by k1, k , c and c in figure 4. Tne displacement,
velocity and accileratioA versui time for the translating mass, or
shoulder, are shown in figures 13, 14 and 15, respectively. TheI significant difference in shock absorber effect is best shown in figure
15 for acceleration, with the magnitude being substantially greater for
the case of no shock absorber. The displacement, velocity and
acceleration versus time for the rifle are shown in figures 16, 17 and
18, respectively. Some increase in velocities over that for the
translacing mass, or shoulder, is noted for the cases with shock
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absorbers. Substantial increases in accelerations for the shock
absorber cases over that for the shoulder are also depicted in figure
18.

In order to assess the effect of varying the damping rates
associated with the shock absorbers, a series of analyses were made.
The Ace shock was arbitrarily selected to evaluate differences in
performance. The case for a damping rate equal to that used in the
analyses to date was used as a reference, and two additional rates were
selected. These are specifically fifty percent and thirty percent of
the damping rate used to date. The displacement, velocity and
acceleration versus time for the translating mass, or shculder, for the
three cases are shown in figures 19, 20 and 21, respectively.
Interestingly, a decrease in damping rate decreases peak velocities and
accelerations. Conversely, looking at the displacement, velocity and
accelerations versus time for the rifle, respectively, shown in figures
22, 23 and 24, a decrease in damping rate increases peak velocities and
accelerations. A change in damping rate, then, has significant impact
on the motion.

Several comparisons between simulation results and experimental
data from ARL testing are shown in figures 25, 26, 27 arH 28. Figure
25 shows displacements versus time for the magnum round dith no shock
absorber for ARL test data versus simulation results. Similarly,
displacements for the case when a shock absorber is used is shown in
figure 26. Figure 27 shows velocities for a magnum round and finally
figure 28 shows accelerations for the case of no shock absorber. In
general, good comparison is made in terms of displacements and
velocities. Acceleration tracks relatively good up to peak and even
after peak except a shift does occur.

CONCLUSIONS AND RECOMMENDATIONS

Some inaccuracies are apparent when observing motion results as
simulation values do not fully coincide with test data. Several
significant factors may well have affected the results as provided in
the figures above. One, the pressure-time curve used for the 11 pound
shoulder mass model is based on Remington's Magnum round, and the round
used at ARL for the 11 pound system w. 3 the Duplex round. Even though
the impulse measured was similar, there very well could be a shift in
the actual curve's shape. The second important factor is that the
damping curves used in the simulation are based on manufacturer-
furnished data, and some error may exist in this data. The last factor
is is the accuracy of the model itself. Although a good check has been
made of the math model and the input to the code, and the' fact that
the code itself is felt to be a verified one, further investigation is
warranted. Good match with displacement and velocity is shown, and in
general peak accelerations are matched. However, some shift in curve
shape and magnitude values are evidenced. Further Remington data has
been requested and further interface with the shock absorber
manufacturers will be pursued. A good model of the ARL fixture has
been developed and will provide the basis for further analysis and
investigation.
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